Селен: функции в организме человека, продукты, богатые селеном.

19.09.2023

Так же, как и серу, его можно сжечь на воздухе. Горит синим пламенем, превращаясь в двуокись SeO 2 . Только SeO 2 не газ, а кристаллическое вещество, хорошо растворимое в воде.

Получить селенистую кислоту (SeO 2 + H 2 O → H 2 SeO 3) ничуть не сложнее, чем сернистую. А действуя на нее сильным окислителем (например, HClO 3), получают селеновую кислоту H 2 SeO 4 , почти такую же сильную, как серная.

Спросите любого химика: «Какого цвета селен ?» - он наверняка ответит, что серого. Но элементарный опыт способен опровергнуть это правильное в принципе утверждение.

Через склянку с селенистой кислотой пропустим сернистый газ (он, если помните, хороший восстановитель), и начнется красивая реакция. Сначала раствор пожелтеет, затем станет оранжевым, потом кровавокрасным. Если исходный раствор был слабым, то эта окраска может сохраняться долго - получен коллоидный аморфный селен. Если же концентрация кислоты была достаточно высокой, то почти сразу же после начала реакции в осадок начнет выпадать тонкий порошок. Его окраска - от ярко-красной до густо-бордовой, такой, как у черных гладиолусов. Это элементный селен, аморфный порошкообразный элементный селен.

Его можно перевести в стеклообразное состояние, нагрев до 220°С, а затем резко охладив. Даже если цвет порошка был ярко-красным, стеклообразный селен будет почти черного цвета, красный оттенок заметен лишь на просвет.

Можно сделать и другой опыт. Тот же красный порошок (немного!) размешайте в колбе с сероуглеродом. На скорое растворение не рассчитывайте - растворимость аморфного селена в CS 2 0,016% при нуле и чуть больше (0,1%) при 50°С. Присоедините к колбе обратный холодильник и кипятите содержимое примерно 2 часа. Затем образующуюся светло-оранжевую с зеленоватым оттенком жидкость медленно испарите в стакане, накрытом несколькими слоями фильтровальной бумаги, и вы получите еще одну разновидность селена - кристаллический моноклинный селен.

Кристаллы-клинышки мелкие, красного или оранжево-красного цвета. Они плавятся при 170°С, но если нагревать медленно, то при 110-120°С кристаллы изменятся: альфа-моноклинный селен превратится в бета-моноклинный - темно-красные широкие короткие призмы. Таков селен. Тот самый селен, который обычно серый.

Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную ячейку можно представить как несколько деформированный куб. При правильном кубическом строении шесть соседей каждого атома удалены от него на одинаковое расстояние, селен же построен чуть-чуть иначе. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.

Плотность серого селена 4,79 г/см3, температура плавления 217°С, а кипения 684,8-688°С. Раньше считали, что и серый селен существует в двух модификациях - SeA и SeB, причем последняя лучше проводит тепло и электрический ток; последующие опыты опровергли эту точку зрения.

Приступая к опытам, нужно помнить, что селен и все его соединения ядовиты. Экспериментировать с селеном можно только под тягой, соблюдая все правила техники безопасности. «Многоликость» селена лучше всего объясняется с позиций сравнительно молодой науки о неорганических полимерах.


Полимерология селена

Эта наука еще так молода, что многие основные представления не сформировались в ней достаточно четко. Нет даже общепринятой классификации неорганических полимеров. Известный советский химик действительный член Академии наук СССР В. В. Коршак предлагал делить все неорганические полимеры прежде всего на гомоцепные и гетероцепные. Молекулы первых составлены из атомов одного вида, а вторых - из атомов двух или нескольких элементов.

Элементный селен (любая модификация!) - это гомоцепной неорганический полимер. Естественно, что лучше всего изучен термодинамически устойчивый серый селен. Это полимер с винтообразными макромолекулами, уложенными параллельно. В цепях атомы связаны ковалентно, а молекулы-цепи объединены молекулярными силами и частично - металлической связью.

Даже расплавленный или растворенный селен не «делится» на отдельные атомы. При плавлении селена образуется жидкость, состоящая опять-таки из цепей и замкнутых колец. Есть восьмичленные кольца Se 8 ,

есть и более многочисленные «объединения». То же и в растворе. Попытки определить молекулярный вес селена, растворенного в сероуглероде, дали цифру 631,68. Это значит, что и здесь селен существует в виде молекул, состоящих из восьми атомов. Видимо, это утверждение справедливо и для других растворов.

Газообразный селен существует в виде разрозненных атомов только при температуре выше 1500°С, а при более низких температурах селеновые пары состоят из двух-, шести- и восьмичленных «содружеств». До 900°С преобладают молекулы состава Se6, после 1000°C - Se 2 .

Что же касается красного аморфного селена, то он тоже полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°C он приобретает каучукоподобные свойства, переходя в высокоэластическое состояние. Моноклинный селен, по-видимому, более упорядочен, чем аморфный красный, но уступает кристаллическому серому.

Все это выяснено в последние десятилетия, и не исключено, что по мере развития науки о неорганических полимерах многие величины и цифры еще будут уточняться. Это относится не только к селену, но и к сере, теллуру, фосфору - ко всем элементам, существующим в виде гомоцепных полимеров.


История селена, рассказанная его первооткрывателем

История открытия элемента № 34 небогата событиями. Диспутов и столкновений это открытие не вызвало, и не мудрено: селен открыт в 1817 г. авторитетнейшим химиком своего времени Йенсом Якобом Берцелиусом. Сохранился рассказ самого Берцелиуса о том, как произошло это открытие.

«Я исследовал в содружестве с Готлибом Ганом метод, который применяют для производства серной кислоты в Грипсхольме. Мы обнаружили в серной кислоте осадок, частью красный, частью светлокоричневый. Этот осадок, опробованный с помощью паяльной трубки, издавал слабый редечный запах и образовывал свинцовый королек. Согласно Клапроту, такой запах служит указанием на присутствие теллура . Ган заметил при этом, что на руднике в Фалюне, где собирается сера, необходимая для производства кислоты, также ощущается подобный запах, указывающий на присутствие теллура. Любопытство, вызванное надеждой обнаружить в этом коричневом осадке новый редкий металл, заставило меня исследовать осадок. Приняв намерение отделить теллур, я не смог, однако, открыть в осадке никакого теллура. Тогда я собрал все, что образовалось при получении серной кислоты путем сжигания фалюнской серы за несколько месяцев, и подверг полученный в большом количестве осадок обстоятельному исследованию. Я нашел, что масса (то есть осадок) содержит до сих пор неизвестный металл, очень похожий по своим свойствам на теллур. В соответствии с этой аналогией я назвал новое тело селеном (Selenium) от греческого (луна), так как теллур назван по имени Tellus - нашей планеты».

Как Луна - спутник Земли, так и селен - спутник теллура.


Первые применения селена

«Из всех областей применения селена самой старой и, несомненно, самой обширной является стекольная и керамическая промышленность».

Эти слова взяты из «Справочника по редким металлам», выпущенного в 1965 г. Первая половина этого утверждения бесспорна, вторая вызывает сомнения. Что значит «самой обширной»? Вряд ли эти слова можно отнести к масштабам потребления селена той или иной отраслью. Вот уже на протяжении многих лет главный потребитель селена - полупроводниковая техника. Тем не менее роль селена в стеклоделии достаточно велика и сейчас. Селен, как и марганец , добавляют в стеклянную массу, чтобы обесцветить стекло, устранить зеленоватый оттенок, вызванный примесью соединений железа . Соединение селена с кадмием - основной краситель при получении рубинового стекла; этим же веществом придают красный цвет керамике и эмалям.

В сравнительно небольших количествах селен используют в резиновой промышленности - как наполнитель, и в сталелитейной - для получения сплавов мелкозернистой структуры. Но не эти применения элемента № 34 главные, не они вызывали резкое увеличение спроса на селен в начале 50-х годов. Сравните цену селена в 1930 и 1956 г.: 3,3 доллара за килограмм и 33 соответственно. Большинство редких элементов за это время стали дешевле, селен же подорожал в 10 раз! Причина в том, что как раз в 50-е годы стали широко использоваться полупроводниковые свойства селена.

Выпрямитель, фотоэлемент, солнечная батарея

Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т. е. проводимость в нем создается главным образом не электронами, а «дырками». И что очень важно, полупроводниковые свойства селена ярко проявляются не только в идеальных монокристаллах, но и в поликристаллических структурах.

Но, как известно, с помощью полупроводника только одного типа (неважно какого) электрический ток нельзя ни усилить, ни выпрямить. Переменный ток превращается в постоянный на границе полупроводников р- и n-типов, когда осуществляется так называемый р-п-переход. Поэтому в селеновом выпрямителе вместе с селеном часто работает сульфид кадмия - полупроводник n-типа. А делают селеновые выпрямители так.

На никелированную железную пластинку наносят тонкий, 0,5-0,75миллиметровый, слой селена. После термообработки сверху наносят еще и «барьерный слой» сульфида кадмия. Теперь этот «сэндвич» может пропускать ноток электронов практически лишь в одном направлении: от железной пластины к «барьеру» и через «барьер» на уравновешивающий электрод. Обычно эти «сэндвичи» делают в виде дисков, из которых собирают собственно выпрямитель. Селеновые выпрямители способны преобразовать ток в тысячи ампер.

Другое практически очень важное свойство селена-полупроводника - его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.

Следует иметь в виду, что принципы действия селеновых и цезиевых фотоэлементов различны. Цезий под действием фотонов света выбрасывает дополнительные электроны. Это явление внешнего фотоэффекта. В селене же под действием света растет число дырок, его собственная электропроводность увеличивается. Это внутренний фотоэффект.

Влияние света на электрические свойства селена двояко. Первое - это уменьшение его сопротивления на свету. Второе, не менее важное - фотогальванический эффект, т. е. непосредственное преобразование энергии света в электроэнергию в селеновом приборе. Чтобы вызвать фото- гальванический эффект, нужно, чтобы энергия фотонов была больше некоей пороговой, минимальной для данного фотоэлемента, величины.

Простейший прибор, в котором используется именно этот эффект, - экспонометр, которым мы пользуемся при фотосъемке, чтобы определить диафрагму и выдержку. Прибор реагирует на освещенность объекта съемки, а все прочее за нас уже сделали (пересчитали) те, кто конструировал экспонометр. Селеновые экспонометры распространены весьма широко - ими пользуются и любители и профессионалы.

Более сложные устройства того же типа - солнечные батареи, работающие на Земле и в космосе. Принцип действия их тот же, что у экспонометра. Только в одном случае образующийся ток лишь отклоняет тоненькую стрелку, а в другом питает целый комплекс бортовой аппаратуры искусственного спутника Земли.


Копию снимает селеновый барабан

В 1938 г. американский инженер Карлсон запатентовал метод «селеновой фотографии», который сейчас называют ксерографией, или электрографией. Это, пожалуй, самый быстрый способ получения высококачественных черно-белых копий с любого оригинала - будь то чертеж, гравюра или оттиск журнальной статьи. Важно, что этим способом можно получать (и получать быстро) десятки и сотни копий, а если оригинал бледен, копни можно сделать намного более контрастными. И не нужно специальной бумаги - ксерографическую копию можно сделать даже на бумажной салфетке.

Электрографические машины сейчас выпускают во многих странах, принцип их действия повсюду один и тот же. В основе их действия - уже упоминавшийся внутренний фотоэффект, присущий селену. Главная деталь электрографической машины - металлический барабан, очень гладкий, обработанный по высшему 14-му классу чистоты и сверху покрытый слоем селена, осажденного в вакууме.

Действует эта машина таким образом. Оригинал, с которого предстоит снять копию, вставляют в приемное окно. Подвижные валики переносят его под яркий свет люминесцентных ламп, а система, состоящая из зеркал и фотообъектива, передает изображение на селеновый барабан. Тот уже подготовлен к приему: рядом с барабаном установлен коротрон - устройство, создающее сильное электрическое поле. Попадая в зону действия коротрона, часть селенового барабана заряжается статическим электричеством определенного знака. Но вот на селен спроектировали изображение, и освещенные отраженные светом участки сразу разрядились - электропроводность выросла и заряды ушли. Но не отовсюду. В тех местах, которые остались в тени благодаря темным линиям и знакам, заряд сохранился. Этот заряд в процессе «проявления» притянет частицы тонкодисперсного красителя, тоже уже подготовленного.

Перемешиваясь в сосуде со стеклянным бисером, частички красителя тоже, как и барабан, приобрели заряды статического электричества. Но их заряды противоположного знака; обычно барабан получает положительные заряды, а краситель - отрицательные. Положительный же заряд, но более сильный, чем на барабане, получает и бумага, на которую нужно перенести изображение.

Когда ее плотно прижмут к барабану (разумеется, это делается не вручную, до барабана вообще нельзя дотрагиваться), более сильный заряд перетянет к себе частички красителя, и электрические силы будут удерживать краситель на бумаге. Конечно, рассчитывать на то, что эти силы будут действовать вечно или по крайней мере достаточно долго, не приходится. Поэтому последняя стадия получения электрографических копий - термообработка, происходящая тут же, в машине.

Применяемый краситель способен плавиться и впитываться бумагой. После термообработки он надежно закрепляется на листе (его трудно стереть резинкой). Весь процесс занимает не больше 1,5 минуты. А пока шла термообработка, селеновый барабан успел повернуться вокруг своей оси и специальные щетки сняли с него остатки старого красителя. Поверхность барабана готова к приему нового изображения.

СЕЛЕН , Se, химический элемент VIII группы периодической системы, аналог серы и теллура, с которыми составляет триаду, подобную группе Сl, Вг и J. Порядковое число 34, атомный вес 79,2; известны изотопы селена с атомными весами 80, 78, 76, 82, 77 и 74. Подобно сере селен образует несколько аллотропических модификаций. Различают четыре характерные формы модификаций селена, из которых две «жидкие» (стекловидный и аморфный) и две кристаллические (красный и серый селен).

Стекловидный селен получается вливанием расплавленного селена в холодную воду в виде коричневато-серой массы в тонких слоях и тёмно-красного цвета в порошке: при 50°С начинает размягчаться; удельный вес 4,28-4,36; при комнатной температуре не проводит тока; при трении заряжается отрицательно; при помощи лучей радия - положительно, растворим в сероуглероде; удельная теплоемкость 0,106.

Аморфный селен получается при осаждении селена из его соединений на холоде; так, при подкислении раствора KCNSe получается красный аморфный селен; ярко красный порошок, прилипающий к рукам и к бумаге при 40-50°С, он размягчается, при охлаждении твердеет и становится хрупким и похожим на стекловидный селен, удельная теплоемкость 0,082. Коллоидный селен получают в виде красного раствора осторожным восстановлением очень разбавленного раствора двуокиси селена при помощи сернистого газа, гидразина или гидроксиламина. При сплавлении с нафталином, антраценом, фенантреном, фенолом, дифениламином селен переходит в плав в коллоидной форме, которая при застывании превращается в массу красного цвета, просвечивающую синим; стабилизуется коллоидный селен с помощью протальбинового и лизальбинового натрия, образуя блестящие пластинки красного цвета, легко растворимые в воде.

Красный кристаллический селен получается перекристаллизацией селена из горячего сероуглеродного раствора его в виде прозрачных красных блестящих листочков, удельный вес 4,45, температура плавления 170-180°С; твердость 2 по шкале Мооса; вполне растворим в сероуглероде, образуя раствор красного цвета. Существует в двух моноклинных формах; α-форма при медленном нагревании переходит при 110-120°С в β-форму; при 125-130°С красный кристаллический селен (β-форма) переходит в металлическую серую модификацию.

Серый кристаллический металлический селен - свинцово-серые (до черного) кристаллы гексагонально ромбоэдрической системы, изоморфные с теллуром. При растирании превращается в черный, переходящий затем в красный порошок, удельный вес 4,78, удельная теплоемкость 0,078, твердость 2 по Моосу, температура плавления 217°С, при 250°С вполне жидкий; при быстром охлаждении застывает в стекловидную массу; проводит электричество, при соприкосновении с металлами обнаруживает термоэлектричество; в холодном сероуглероде нерастворим; легко растворяется в хлороформе; металлический селен есть смесь двух форм, из которых α-форма матово-серая, отливающая красным, при комнатной температуре плохо проводящая ток; β-форма светло-серая, проводящая ток; α-форма метастабильна и легко переходит в β-форму, особенно при нагревании до 200°С. Усиление освещения селена способствует образованию β -формы, проводящей ток; по мнению некоторых авторов β-форма в свою очередь состоит из двух модификаций, находящихся в равновесии, причем усиление освещения способствует образованию более электропроводящей формы. Селен во всех модификациях диамагнитен.

Важнейшее физическое свойство селена - изменение электропроводности с освещением селена - представляет большой практический интерес. Для одного и того же образца селена электропроводность растет с увеличением напряжения при постоянном токе сильнее, чем при переменном; при постоянном напряжении электропроводность растет со временем. Сопротивление селена прохождению тока падает очень резко с усилением освещения. Повышение электропроводности прямо пропорционально корню квадратному (по некоторым авторам корню 4-й степени) из силы света. Примесь теллура делает селен восприимчивее к более коротким волнам. Рентгеновы лучи, ультрафиолетовые и другие действуют как видимые лучи. По Адамсу освещенный селен обнаруживает фотоэлектрический эффект. На этом свойстве основано применение селена для фотоэлементов, в частности в приборах для измерения силы света звезд. Свыше 220°С все твердые модификации селена переходят в расплавленное состояние. Жидкий селен коричнево-тёмно-красного цвета, не изменяющегося с температурой. Вязкость селена не изменяется с температурой, как это свойственно сере; температура кипения жидкого селена 690°С. Расплавленный селен проводит электрический ток; он легко м. б. переохлажден, причем образуется аморфный или стекловидный селен. В химическом отношении селен близок к сере и теллуру, ближе к сере; дает соединения с галоидами и металлами (селениды ). Расплавленный селен действует на железо . На воздухе сгорает, образуя окись селена SeО 2 ; с водородом соединяется при достаточном нагревании, образуя селенистый водород H 2 Se. Соляная кислота не реагирует с селеном, азотная кислота окисляет до SeО 2 . Разбавленная серная кислота не действует, а концентрированная H 2 SО 4 растворяет, давая раствор зеленого цвета, и при разбавлении выделяет селен; щелочи растворяют селен. Кислород при обыкновенной температуре на селен не действует. В щелочах селен растворяется с образованием солей: селенидов, селенитов и полиселенидов.

Соединения селена . В соединениях селен бывает 2-, 4- и реже 6-валентным, образует комплексные соединения типа Me 2 (SeR 6). Селен дает ряд солей, аналогичных солям серы; селеносульфит Na 2 SSeО 3 (тип гипосульфита), селеносульфид Na 2 SSe n (тип полисульфида), селеноцианид KCNSe (тип роданида) и т. д. Известны также органические соединения селена, построенные также по типу соответствующих соединений серы, например, дихлордиэтилселенид Se(C 2 H 4 Cl), аналог иприта. Немногие соединения селена находят практическое применение. Селенистый водород H 2 Se получается при действии кислот на его соли (селениды Me 2 Se), легко образуется также из элементов при нагревании до 350°С в присутствии пемзы; от водорода очищается конденсацией при температуре 40-60°С. При обычной температуре H 2 Se - газ удельный вес (по воздуху) 2,795; H 2 Se легко разлагается на элементы, на воздухе горит с образованием окиси селена; SeО 2 мало растворим в воде; с водой образует гидрат. В водном растворе является слабой кислотой. Соли H 2 Se, селениды, подобны сульфидам. Двуокись селена SeО 2 образуется при сильном накаливании селена в токе кислорода или воздуха, причем селен воспламеняется; кристаллизуется в бесцветных иглах, температура плавления 340°С, восстановителями (например, фенилгидразином) переводится снова в селен; удельный вес 3,95; легко растворима в воде, спирте, плохо - в бензоле; SeО 2 - сильный окислитель, при окислении восстанавливающийся до Se; выделение Seиз SeO 2 происходит при нагревании с S, Р, С, Н2 и металлами. При растворении в воде SeО 2 образует селенистую кислоту H 2 SeO 3 - большие кристаллы гексагональной системы, удельного веса 3,006, выпадающие при выпаривании раствора. Селеновая кислота H 2 SeО 4 получается при окислении H 2 SeО 3 с помощью перекиси водорода, перманганата калия, двуокиси марганца и др. H 2 SeО 4 - сильная кислота, почти как серная. Селен дает соли - селениты типа Me2SeО 3 . Селенит натрия Na 2 SeО 3 кристаллизуется в маленьких призмах гексагональной системы; легко растворим в воде, в спирте меньше; получается выпариванием Н 2 SеO 3 с теоретическим количеством раствора соды или едкого натра, также нагреванием SeО 2 с NaOH. С галоидами селен дает ряд соединений: SeF 6 - инертный газ, SeF 4 - бесцветная жидкость; Se 2 Cl2 - жидкость красноватого цвета; четыреххлористый селен SeCl 4 получают хлорированием селена с избытком Сl; твердое кристаллическое тело. Технический интерес имеет оксихлорид селена SeOCl 2 , получаемый перегонкой SeCl 4 с SeО 2 , по реакции SeО 2 + SeCl 4 = 2SeOCl 2 , или осторожным добавлением Н 2 О к SeCl 4 ; температура плавления 8,5°С; температура кипения 177,2°С; при нагревании до температуры кипения разлагается, смешивается во всех отношениях с ССl 4 , CS 2 , СНСl 3 , С 6 Н 6 ; растворяет S, Se, Те, Вг и J; известен также оксифторид селена - бесцветная дымящая жидкость. Почти все соединения селена оказывают сильное физиологическое действие: H2Se ядовит и вызывает головные боли, воспаление глаз и слизистых оболочек; SeО 2 и H 2 SeО 3 вызывают раздражение кожи, подобное экземе; еще сильнее действует H2SeО 4: вызывает на коже раны, разъедает ногти. Действие Se (С 2 Н 4 Сl) 2 аналогично действию иприта.

Распространение селена в природе . В свободном состоянии селен встречается в залежах элементарной серы, гл. образом вулканического происхождения. Однако подобные месторождения сравнительно редки, и сырье этого рода в технологии селена не имеет большого значения. Чаще селен встречается в виде селенидов: берцелианит - селенид меди Cu 2 Se, тиеманит - селенид ртути, клаусталит - селенид свинца, науманит - селенид серебра; известны также и селениты: меди (Аргентина) - халькоменит , свинца - молибдоменит и кобальта - кобальтоменит ; зоргит (Аргентина) содержит до 31% Se; известны также эйкарит - (Cu, Ag) 2 Se и крукезит - (Сu, Fe, Ag) 2 Se. В небольших количествах селена содержится в пирите; при его сжигании в производстве серной кислоты селен окисляется до SeO 2 и вместе с SО 2 попадает в пыльные камеры; там сернистым газом SeО 2 восстанавливается до Se, в результате чего, в зависимости от метода производства серной кислоты, выделяется в элементарном виде в пыльных камерах, котрелях, гловеровой башне, в сернокислотных камерах и т. п., где и накопляется в виде пыли или ила, которые и являются исходным сырьем для получения селена.

Получение селена:

1) Из камерного ила . Как указано выше, селен восстанавливается с помощью SO 2 до элементарного Se;

SeО 2 +2SО 2 =Se+2SО 3 .

Выпавший элементарный селен частично осаждается в пыльных камерах, частично попадает в гловерову башню и в камеры, где осаждается в виде ила, содержащего кроме селена сернокислый свинец и другие примеси. В илах гловеровой башни содержание селена доходит до 25%, в содержащих свинец илах 0,1-2%, реже до 5%. Переработка ила производится различными способами: а) с помощью цианистого калия KCN ил обрабатывается при 80-100°С концентрированным раствором KCN, при этом сера переходит в раствор в виде роданистого калия KCNS, a Se - в виде KCNSe. По фильтровании раствор и промывные воды подкисляют соляной кислотой, причем осаждается селен; сера остается в растворе в виде HCNS. Недостатком метода является относительно высокая цена KCN, а главное - выделение при подкислении HCN, представляющей сильнейший яд. б) При окислительном методе ил обрабатывается азотной кислотой, сплавляется с селитрой и т. д. Образующиеся при этом окислы селена (SeО 2 , иногда SeО 3) переходят в раствор, и по выпаривании азотной кислоты выпавший сухой остаток растворяется в концентрированной соляной кислоте, после чего SeO 2 восстанавливается, например, сернистым газом:

2H 2 О+SeО 2 +2SО 2 =2H2SО 4 +Se.

в) При огневом методе селен возгоняется (вместе с серой) при нагревании ила в ретортах. Метод в настоящее время не представляет интереса. г) При растворении в сульфите натрия с последующим выделением селена кислотой:

Na 2 SO 3 +Se=Na 2 S+SeО 3 .

Метод связан с выделением SО 2 при подкислении и с получением селена, загрязненного серой, так как получающийся одновременно и Na 2 S 2 О 3 при подкислении выделяет серу. Метод имеет также и ряд других недостатков. Для обогащения ила предложено несколько методов, например, обработка ила концентрированным кипящим раствором MgCl 2 , причем образуется MgSО 4 и РbСl 2 (при нагревании легко растворимый), а селен остается в осадке, и др. В последнее время делались попытки обогащения ила флотацией. Из всех предложенных методов за границей имели наибольшее распространение цианистый и окислительный, причем последний, например, в таком виде: ил обрабатывался NaNО 3 в присутствии 85 %-ной H 2 SО 4 ; затем в смесь вдувался пар до разбавления N 2 SО 4 до 30° Вѐ (градусов Боме), после чего сквозь раствор продувался воздух до удаления окислов азота, и после фильтрования жидкости и добавлении соляной кислоты селен осаждался сернистым газом. В последнее время предложен был (W. Stahl) метод, основанный на растворении селена в дымящей серной кислоте и на выделении селена сернистым газом. Так как среднее содержание селена в иле невелико, стоимость такой переработки оказывается слишком высокой. В институте им. Л. Я. Карпова разработан метод получения селена из камерного ила, основанный на предварительном использовании содержащегося в иле свинца. В основном метод заключается в следующем: промытый от сернистой кислоты ил с содержанием, например, 2% селена обрабатывается содой, причем сульфат свинца переходит в карбонат:

PbSО 4 +Na 2 CО 3 =PbCО 3 +Na 2 SО 4 ;

РbСO 3 растворяют в уксусной кислоте, и образующийся ацетат свинца отфильтровывают, уваривают, и он идет на кристаллизацию. Отмытый от Рb ил содержит 30-40% селена, который м. б. извлечен из ила любым способом.

2) Получение селена из пыли производилось до сих пор одним из описанных выше способов.

3) Получение селена из анодного шлама электрических установок для рафинировки меди . В зависимости от состава шлам подвергается различным предварительным операциям: так, медь удаляют после окисления на воздухе посредством растворения в серной кислоте; Pb, Sb с разными добавками переводятся в шлак (известь и т. д.). Селен растворяют после этого, продолжая вводить воздух и добавляя к массе соду и селитру; одновременно переходит в раствор и часть теллура. Из раствора солей селенистой и теллуристой кислот последняя м. б. удалена прибавлением разбавленной серной кислоты:

Na 2 TeО 3 + H 2 SО 4 =Na 2 SО 4 +TeО 2 +H 2 О,

причем ТеО 2 выпадает. Образующаяся по аналогичному уравнению H 2 SeО 3 остается в растворе. Осаждение Se производится восстановлением с помощью SO 2 в сернокислой или, лучше, солянокислой среде.

Очистка селена . Обычно применяется окисление азотной кислотой с последующим осаждением селена; предварительно, до осаждения селена, можно еще несколько раз произвести возгонку SeО 2 . Нагреванием с концентрированной серной кислотой, по некоторым данным, можно перевести селен в раствор в виде SeO 2 и восстановлением получить чистый продукт.

Применение селена . Se применяют в стекольной промышленности для обесцвечивания зеленого стекла и для получения рубиновых стекол и в резиновой промышленности (вместо серы) для получения стойких сортов каучука, затем для фотоэлементов и разнообразных приборов, связанных со свойством селена проводить ток при усиленном освещении. Здесь можно упомянуть работы над применением селена для передачи изображений на расстояние, для измерения энергий световых лучей, в частности лучей звезд, для автоматического зажигания уличных фонарей и т. д. Соединения селена находят кроме того применение в фотографии (виражные ванны и т.п.); SeOCl 2 предложен как растворитель ненасыщенных органических соединений - каучука, смол; далее - как добавка к горючему (в качестве антидетонатора). Соли H 2 SeО 3 с успехом применяются вместо серы для окраски и обесцвечивания стекла вследствие их меньшей летучести и меньших потерь при работе. H 2 SeО 3 и Li- и Th-соли ее имеют сильное фунгисидное и бактерисидное действие. Сплав S-Se (в соотношении 2:1) предложен в качестве изолятора в смеси с различными наполнителями. Наконец этот же сплав в различных соотношениях применяется для вулканизации каучука.

Мировые тенденции таковы, что люди все чаще задумываются о состоянии своего организма и о здоровье в целом. Ведутся исследования и доказываются теории влияния тех или иных химических соединений на органы и системы. Не стал исключением и селен, так как польза этого химического элемента для живых организмов неоценима.

Что такое селен?

Селен – это один из химических элементов, представленных в периодической системе Д. И. Менделеева. Относится к неметаллам. Его атомный номер 34. Минералы селена могут быть черного, красного или серого оттенка.

Натуральный селен содержится в земной коре. Свое название он получил от греческого слова «Селена» (Луна). Встречается в минеральных водах и морской воде. По своим свойствам похож на серу, но его химическая активность меньше.

Биологическая роль вещества в живой природе

Селен является одним из необходимых для жизни элементов, так как входит в состав белков. В белках представлен аминокислотой селеноцистеином. Дефицит селена (особенно в детском организме) приводит к летальному исходу.

В человеческом организме этот элемент выполняет несколько функций:

  • иммуномодулирующую;
  • противораковую;
  • способствует образованию некоторых гормонов;
  • является антиоксидантом.

Интересный факт

В ядрах живых клеток тоже присутствует селен. Он способствует метаболизму нуклеиновых кислот. А нуклеиновые кислоты (ДНК и РНК) содержаться во всех живых организмах и отвечают за передачу наследственной информации.

Польза селена

Для человеческого организма это элемент играет неоценимую роль. Но с ним стоит быть осторожным, так как его недостаток (равно как и избыток) может приводить к гибели живого организма. Рекомендуемая суточная доза вещества для нормальной жизнедеятельности человека составляет 70-100 мкг.

Почему же этот микроэлемент так необходим любому организму?

  1. Он обладает противорадиационным и противотоксическим действием.
  2. Снижает вероятность риска мутаций.
  3. Укрепляет мышечные волокна миокарда и препятствует развитию заболеваний сердечно-сосудистой системы.
  4. Нормализует обменные процессы.
  5. Способствует образованию гормонов щитовидной железы (трийодтиранина) и усвоению йода.
  6. Выводит соли тяжелых металлов из тканей (свинец, ртуть, кадмий).
  7. Способствует синтезу гормонов поджелудочной железы. Усиливает выработку инсулина. Терапия селенсодержащими препаратами применяется при сахарном диабете II типа. Такое лечение дает хорошие результаты и при панкреатите.
  8. Нормализует работу ЖКТ (улучшает секрецию слизи, выработку ферментов).
  9. Стимулирует выработку интерферона, что позволяет иммунной системе успешно бороться с вирусами гриппа.
  10. Ускоряет синтез витамина Е, усиливая его действие как антиоксиданта.
  11. Снижает тяжесть течения некоторых распространенных заболеваний (псориаз, бронхиальная астма, дерматоз). Для этого селен применяют в совокупности с витаминами Е и С.
  12. Способствует улучшению подвижности суставов. Применяется при артритах, артрозах, ревматизме. В травматологии используется при переломах, так как способствует росту костной ткани.
  13. Нервная система на прием селена отзывается довольно хорошо: улучшается память и активность нейронов. Иногда микроэлемент используют в борьбе с рассеянным склерозом.
  14. Селен улучшает минеральный обмен, способствует гармоничной работе почек и мочевыделительной системы. Применяется при лечении пиелонефрита.
  15. Защитное воздействие неметалла позволяет восстанавливать клетки печени. Используется в препаратах-гепатопротекторах при циррозе.
  16. Защищает человека от токсического воздействия продуктов жизнедеятельности плесневых грибов.

На заметку

Крайне важен селен и для мужского здоровья: микроэлемент способствует усилению репродуктивной функции, в значительной мере увеличивая активность мужских половых клеток.

Этот элемент повышает активность иммунной системы, что крайне важно в детском возрасте. Дефицит селена может привести к эндемическому кретинизму и умственной отсталости. А в сочетании с вирусом Коксаки, который в последнее время распространяется по земному шару, дефицит микроэлемента может спровоцировать болезнь Кешана. Эта патология приводит к дистрофии тканей миокарда с дальнейшей некротизацией. Без квалифицированной помощи вызывает летальный исход.

Противораковые свойства элемента

К сожалению, злокачественные новообразования все чаще поражают организмы людей во всех уголках планеты. Лечение рака дорогостоящее и не всегда приводит к положительному результату. Снизить риск развития раковых опухолей помогает прием определенных веществ. Одним из таких веществ и является селен.

Этот микроэлемент способствует снижению риска развития опухоли почти на 40%. Кажется невероятным, но достаточное количество в вашем рационе продуктов, богатых селеном, поможет избежать онкологии. А селенотерапия во время онкологии способна почти вдвое уменьшить летальность пациентов.

Во многих развитых странах уже давно приняты программы «селенизации» населения. Основные задачи таких программ направлены на предупреждение патологий у жителей. Исследования последних лет показывают, что польза селена в процессе таких программ налицо: риск развития онкологии существенно снижается, как и патологий сердечно-сосудистой и иммунной систем.

Вред для человеческого организма

Несмотря на положительные качества селена, этот микроэлемент способен нанести колоссальный вред организму. Медики настоятельно рекомендуют употреблять его дозированно, чтобы не вызвать избытка.

Отрицательное воздействие химического вещества на кожу заключается в следующем.

  • При попадании на эпидермис солей неметалла возникает сильная реакция. Чувство онемения и дерматит – это малая часть последствий. Элемент может вызывать сильные химические ожоги.
  • При попадании вещества на слизистые оболочки (глаза, рот) возникает раздражение, боль, гиперемия. Вызывает конъюнктивит.

Токсически опасными являются все соединения селена. Особенно опасен в этом плане селеноводород. Серый, или металлический, селен наименее опасен, но даже 1 грамм вещества, употребленного внутрь, способен вызвать отравление. Симптомы: боль в животе, тошнота, рвота, диарея. Через некоторое время симптоматика проходит.

Женский организм и селен

Для женщин достаточное количество микроэлемента в рационе играет важную роль. Он обеспечивает множество жизненно важных процессов:

  1. нормализует обмен веществ, что позволяет женщинам выглядеть стройными;
  2. отдаляет приход климакса;
  3. налаживает репродуктивную функцию, что позволяет беспрепятственно забеременеть;
  4. улучшает состояние кожи, волос и ногтей;
  5. предотвращает развитие воспалительных процессов женских половых органов.

Благодаря достаточному количеству этого микроэлемента снижается риск развития рака матки и молочных желез. Если же онкология началась, то химический элемент позволяет успешно вылечить опухоль. Прием селена снижает риск необходимости удаления матки, что позволяет сохранить репродуктивную функцию.

При беременности микроэлемент тоже очень важен. Он помогает справиться со многими трудностями вынашивания ребенка:

  1. предотвращает токсическое воздействие на плод;
  2. снижает риск развития мутаций плода;
  3. улучшает состояние при токсикозе;
  4. позволяет женскому организму быстро восстановиться в послеродовом периоде.

Очень важно употреблять достаточное количество селена во время грудного вскармливания. Он обеспечивает хорошее самочувствие матери и крепкое здоровье ребенка. Но не стоит выбирать витаминные комплексы с повышенным содержанием селена – отдавайте предпочтение натуральным источникам этого вещества.

Симптомы дефицита и переизбытка селена

Как же проявляется дефицит вещества? О его нехватке можно понять по такой симптоматике:

  • слабость и ломота во всем теле;
  • постоянная сонливость;
  • ухудшение состояния кожи и волос;
  • возникают проблемы со зрением (временная близорукость);
  • в мышцах постоянное ощущение ломоты;
  • могут появиться высыпания на различных участках кожи.
  • ухудшается память;
  • может повышаться вес тела;
  • снижается иммунитет, часто возникают простудные заболевания.

А вот о переизбытке вещества говорят следующие симптомы:

  • боль в животе, тошнота, рвота;
  • может учащаться стул;
  • развивается алопеция (выпадение волос);
  • изо рта возникает запах чеснока (поэтому иногда избыток селена можно спутать с отравлением мышьяком);
  • появляется головокружение и головная боль;
  • глаза болят и краснеют.

Доступные источники селена

Чтобы понять, какое количество вещества содержится в тех или иных продуктах, достаточно посмотреть сравнительную таблицу. В ней представлены растительные продукты – рекордсмены по содержанию селена.

Название продукта Содержание микроэлемента в мкг на 100 г сырого продукта
Зерна бертолеции (бразильского ореха) 1500
Финики 400
Вешенка (грибы) 130
Мякоть кокосового ореха 70-100
Семена подсолнечника 50
Кукуруза 30
Брокколи 2,5

В следующей таблице представлены продукты животного происхождения, богатые селеном.


В фармацевтической промышленности представлены витаминные комплексы, обогащенные селеном, и препараты с высоким содержанием этого вещества. Такие лекарства не стоит принимать без врачебного назначения: они имеют довольно большое количество побочных эффектов и противопоказаний. Особенно не стоит экспериментировать с такими комплексами детям, беременным и кормящим матерям.

Чтобы получить необходимое количество микроэлемента, не стоит пичкать себя химией. Достаточно пересмотреть свой рацион и обогатить его необходимыми продуктами. А к фармацевтической продукции прибегать только в крайнем случае. Берегите свое здоровье!

Что мы знаем о селене? На школьных уроках химии нам рассказывали о том, что селен - химический элемент, мы могли решать различные химические уравнения и наблюдать реакции с его участием. Но элементов в таблице Менделеева так много, что весь объем информации охватить невозможно. Поэтому все изложено довольно кратко.

В этой статье можно подробно ознакомиться с элементом под названием «селен». Что это такое, каковы его свойства, где в природе можно встретить этот элемент и как он используется в индустрии. Помимо этого, немаловажно знать, какое влияние он оказывает на наш организм.

Что такое селен

Черный стекловидный селен можно получить путём нагревания элемента любой модификации до температуры 220 градусов Цельсия с быстрым охлаждением.

Гексагональный селен имеет серый цвет. Эту модификацию, наиболее устойчивую термодинамически, можно получить также путем нагревания до температуры плавления с дальнейшим охлаждением до температуры 180-210 градусов Цельсия. Необходимо некоторое время выдерживать такой температурный режим.

Оксид селена

Есть ряд оксидов, которые образуются путем взаимодействия селена и кислорода: SeO 2 , SeO 3 ,SeO, Se 2 O 5 . При этом SeO 2 и SeO 3 - это ангидриды селенистой (H 2 SeO 3) и селеновой (H 2 SeO 4) кислот, которые образуют соли селенит и селенат. Оксид селена SeO 2 (хорошо растворяется в воде) и является самым устойчивым.

Перед тем, как начинать опыты с этим элементом, стоит помнить, что любые соединения с селеном ядовиты, поэтому необходимо принимать все меры безопасности, к примеру, надевать защитные средства и проводить реакции в

Цвет селена проявляется в ходе приятной глазу реакции. Если через колбу с селенистой кислотой пропустить сернистый газ, который является хорошим восстановителем, то полученный раствор станет желтым, потом оранжевым и в итоге - кроваво-красным.

Слабый раствор даст возможность получить аморфный коллоидный селен. В случае, если концентрация селенистой кислоты будет высокой, то в ходе реакции будет оседать от красного до тёмно-бордового оттенка порошок. Это будет аморфный порошкообразный селен элементарной формы.

Для того, чтобы привести вещество в стеклообразное состояние, необходимо его нагреть и резко охладить. Цвет изменится на черный, а вот красный оттенок можно будет заметить, только если смотреть на просвет.

Кристаллический моноклинный селен получить будет немного сложнее. Для этого нужно взять небольшое количество красного порошка и перемешать с сероуглеродом. К сосуду со смесью необходимо подключить обратный холодильник и кипятить в течение 2 часов. Вскоре начнет образовываться светло-оранжевая жидкость с лёгким зеленым оттенком, которую нужно будет медленно испарить в ёмкости под

Применение селена

Впервые селен начали применять в керамической и стекольной промышленности. Об этом нам говорит «Справочник по редким металлам» 1965 года издания.

Селен добавляется в стеклянную массу с целью обесцвечивания стекла, устранения зеленоватого оттенка, который даёт примесь соединений железа. Для получения в стекольной промышленности используется соединение селена и кадмия (кадмоселит CdSe). В производстве керамики кадмоселит придаёт ей красный цвет, а также окрашивает эмали.

Немного селена используется в качестве наполнителя в резиновой промышленности, а также в сталелитейной - для того, чтобы полученные сплавы имели мелкозернистую структуру.

Большинство полупроводниковой техники изготавливается с использованием селена. Это и стало главной причиной роста стоимости такого вещества, как селен. Цена возросла от 3,3 до 33 долларов за 1 килограмм в 1930 и 1956 годах соответственно.

Стоимость селена на мировом рынке в 2015 году составила 68 долларов за 1 кг. Тогда как в 2012 килограмм этого металла стоил около 130 долларов за один килограмм. Спрос на селен (цена тому подтверждение) падает из-за высокого предложения.

Вещество также широко используется при производстве фототехники.

Наличие селена в организме человека

Наш организм содержит приблизительно 10-14 миллиграммов этого вещества, которое сосредоточено в большей степени в таких органах, как печень, почки, сердце, селезенка, яички и семенные канатики у мужчин, а также в ядрах клеток.

Потребность человеческого организма в таком микроэлементе как селен невысока. Всего 55-70 микрограммов для взрослых. Предельной суточной дозой считается 400 микрограммов. Тем не менее есть болезнь, называемая болезнь Кешана, которая возникает при дефиците этого элемента. Примерно до 60-х годов селен считался ядовитым веществом, которое оказывает негативное воздействие на организм человека. Но после детального исследования были сделаны обратные выводы.

Часто при выявлении патологического содержания селена врачи могут назначать специальные препараты, содержащие комбинацию цинк-селен-магний, вещества, которые в комплексе восполнят недостаточность его в организме. Разумеется, не исключая продукты, которые содержат селен.

Воздействие на организм

Селену принадлежит очень важная роль в процессе жизнедеятельности организма:

  • он активирует иммунитет - «стимулирует» лейкоциты на более активное воздействие на вредоносные микроорганизмы (вирусы);
  • замедляет процессы старения в организме;
  • снижает риски возникновения аритмии, внезапной коронарной смерти или кислородного голодания благодаря замедлению окисления холестерина;
  • ускоряет приток крови к мозгу, активируя мыслительную деятельность, снимает симптомы хандры и депрессии (усталость, вялость, подавленность и беспокойность);
  • тормозит развитие раковых клеток, обладая антиоксидантными свойствам;
  • активно селен борется со свободными радикалами;
  • при взаимодействии с витамином Е действует как противовоспалительное средство.

Конечно же, нельзя обойти вниманием такое важное свойство микроэлемента, как помощь в борьбе с опасными вирусами: ВИЧ/СПИД, гепатиты, лихорадка Эбола.

Благодаря наличию селена вирус задерживается внутри клетки; вещество предупреждает распространение вируса по организму. Но если селена недостаточно, то его функция не срабатывает должным образом.

Приём селена в комплексе с йодом поможет остановить прогрессирующее заболевание щитовидной железы (нехватка тироксина), а в некоторых случаях стимулирует регресс болезни (чаще у детей).

Также в медицине селен используется в целях профилактики сахарного диабета, поскольку он ускоряет потребление глюкозы организмом.

Препарат с витаминами может назначаться беременным. Он помогает справиться с симптомами токсикоза, снимет усталость и поднимет настроение.

Дефицит селена

Почему в организме может быть нехватка такого вещества, как селен? Что это такое - «дефицит селена» и как с ним бороться? На самом деле это неприятное заболевание, несмотря на то, что возникает оно довольно редко.

Важно знать, что злейшим врагом этого вещества является, конечно же, углеводы - мучное, сладкое. В сочетании с ними селен очень плохо усваивается организмом и от этого может возникать его недостаток.

Каковы же признаки дефицита? Прежде всего стоит отметить, что при дефиците селена будет снижаться работоспособность и общее настроение.

Нехватка селена ослабляет иммунитет, вследствие чего организм становится более восприимчивым к различным заболеваниям как психического, так и физического плана.

Также при дефиците этого вещества в организме нарушается процесс усвоения витамина Е.

Основными признаками недостатка селена являются: боли в мышцах и суставах, преждевременная усталость, анемия, обостряются болезни почек и поджелудочной железы.

Но если вы почувствовали какой-то из симптомов, ни в коем случае не следует заниматься медикаментозным самолечением. Обязательно необходимо посетить врача и проконсультироваться по поводу необходимости приёма тех или иных препаратов. Иначе можно самостоятельно вызвать избыток селена, что хуже в некоторых случаях. К примеру, если человек с онкологическим заболеванием будет бесконтрольно принимать селен, химия (химиотерапия) может не подействовать.

Избыток селена

Перенасыщенность селеном также производит негативный эффект на организм. Основными признаками профицита являются: поражение волос и ногтей, повреждение зубов, усталость и постоянные нервные расстройства, потеря аппетита, появление дерматитов, артритов, а также желтушность и шелушение кожи.

Но если вы не работаете на мощностях по добыче селена, или не живете около мест, где добывают это вещество, то можно не бояться избытка селена в организме.

Продукты богатые селеном

Больше всего селена содержится в мясе и печени - свиной, говяжьей, куриной, утиной или печени индейки. К примеру, в 100 граммах печени индейки содержится 71, а в свиной - 53 микрограмма селена.

В 100 граммах мяса осьминога содержится 44,8 мкг селена. Также в рацион стоит включить такие продукты, как креветки, красную рыбу, яйца, кукурузу, рис, фасоль, ячневую крупу и чечевицу, пшеницу, горох, капусту брокколи, неактивные хлебопекарские дрожжи (обработанные разогретой до 60 градусов водой). Не стоит забывать об орехах - фисташки, миндаль, грецкий орех и арахис также содержат селен, пусть и в небольших количествах.

Стоит также помнить о том, что при обработке продуктов вещество теряется, консервы и концентраты содержат в два раза меньше селена, чем свежие продукты. Поэтому, по возможности, необходимо употреблять как можно больше свежих продуктов с содержанием селена.

ОПРЕДЕЛЕНИЕ

Селен расположен в четвертом периоде VI группы главной (А) подгруппы Периодической таблицы.

Относится к элементам p -семейства. Неметалл. Обозначение - Se. Порядковый номер - 34. Относительная атомная масса - 78,96 а.е.м.

Электронное строение атома селена

Атом селена состоит из положительно заряженного ядра (+34), внутри которого есть 34 протона и 45 нейтронов, а вокруг, по трем орбитам движутся 34 электрона.

Рис.1. Схематическое строение атома селена.

Распределение электронов по орбиталям выглядит следующим образом:

34Se) 2) 8) 18) 6 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4 .

Внешний энергетический уровень атома селена содержит 6 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Каждый валентный электрон атома селена можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Наличие двух неспаренных электронов свидетельствует о том, что степень окисления селена равна +2. Так как на четвертом уровне есть вакантные орбитали 4d -подуровня, то для атома селена характерно наличие возбужденного состояния:

Именно поэтому для селена также характерна степень окисления +4.

Примеры решения задач

ПРИМЕР 1