Что такое пара сил? Чему равен момент пары? Пара сил. Момент пары сил

06.12.2023

1. Плоская система сходящихся сил

Система сходящихся сил находится в равновесии , когда алгебраические суммы проекций ее слагаемых на каждую из двух координатных осей равны нулю.

Проекция силы на ось.

Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной.

Проекция вектора считается положительной (+), если направление от начала к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (-), если направление от начала проекции к ее концу противоположно положительному направлению оси.

Если сила совпадает с положительным направлением оси, но угол будет тупой – тогда проекция силы на ось будет отрицательною.

Итак, проекция силы на ось координат равна произведению модуля силы на косинус или синус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу, можно спроецировать на две координатные оси Ох и Оу:

; ; .

Проекция векторной суммы на ось.

Геометрическая сумма, или равнодействующая, этих сил

определяется замыкающей стороной силового многоугольника: ,

где п – число слагаемых векторов.

Итак, проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

2. Пара сил

Сумма проекций пары сил на ось х и на ось у равна нулю, поэтому пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил находится в равновесии.

Способность пары сил производить вращение определяется моментом пары , равным произведению силы на кратчайшее расстояние между линиями действия сил. Обозначим момент пары М , а кратчайшее расстояние между силами а , тогда абсолютное значение момента:

Кратчайшее расстояние между линиями действия сил называется – плечом пары , поэтому можно сказать, что момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

Момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения.

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой механическое состояние тела не изменяется, т.е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Еще одно свойство пары сил, которое является основой для сложения пар:

− не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

По определению пары сил эквивалентны, т.е. производят одинаковое действие, если их моменты равны.

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F 1 a = F 2 b, то состояние тела от такой замены не нарушится.

Подобно силам пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей. Действие пары сил полностью определяется ее моментом и направлением вращения. Исходя из этого, сложение пар производится алгебраическим суммированием их моментов, т.е. момент результирующей пары равен алгебраической сумме моментов составляющих пар.

Момент результирующей пары определится по формуле:

М= М 1 + М 2 +... + М п. =

М і ,

Где моменты пар, вращающие по часовой стрелке, принимаются положительными, а против часовой стрелки – отрицательными. На основании приведенного правила сложения пар устанавливается условие равновесия системы пар лежащих в одной плоскости, а именно: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю:

Момент силы относительно точки и оси.

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы.

При закреплении тела в точке О сила

стремится поворачивать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента , а длина перпендикуляра а – плечом относительно центра момента .

Момент силы

относительно О определяется произведением силы на плечо: .

Момент принято считать положительным, если сила стремится вращать тело по часовой стрелке, а отрицательным - против часовой стрелки. Между моментом пары и моментом силы есть одно существенное различие. Численное значение и направление момента пары сил не зависит от положения этой пары в плоскости. Значение и направление (знак) момента силы зависит от положения точки, относительно которой определяется момент.Следовательно, для определения момента силы относительно оси нужно спроектировать силу на плоскость, перпендикулярную оси, и найти момент проекции силы относительно точки пересечения оси с этой плоскостью.

3. Метод кинетостатики

Представим себе материальную точку массой т, движущуюся с ускорением а под действием какой-то системы активных и реактивных сил, равнодействующая которых равна F.

Воспользуемся одной из известных нам формул (основным уравнением динамики) для того, чтобы уравнения движения записать в форме уравнений равновесия (метод кинетостатики):

Перепишем это уравнение в следующем виде:

Выражение обозначается К ин и называется силой инерции:

Сила инерции есть вектор, равный произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению.

Это равенство, являющееся математическим выражением принципа, который носит имя французского ученого Даламбера (1717-1783), можно рассматривать как уравнение равновесия материальной точки. Следует подчеркнуть, что полученное равенство, хотя и названо уравнением равновесия, в действительности является видоизмененным уравнением движения материальной точки.

Принцип Даламбера формулируется гак: активные и реактивные силы, действующие на материальную точку, вместе с силами инерции образуют систему взаимно уравновешенных сил, удовлетворяющую всем условиям равновесия.

Следует помнить, что сила инерции приложена к рассматриваемой материальной точке условно, но для связи, вызывающей ускорение, она в определенном смысле является реальной. Обладая свойством инерции, всякое тело стремится сохранять свою скорость по модулю и направлению неизменной, в результате чего оно будет действовать на связь, вызывающую ускорение, с силой, равной силе инерции. В качестве примера действия сил инерции можно привести случаи разрушения маховиков при достижении ими критической угловой скорости. Во всяком вращающемся теле действуют силы инерции, так как каждая частица этого тела имеет ускорение, а соседние частицы являются для нее связями. Отметим, что весом тела называется сила, с которой тело вследствие притяжения Земли действует на опору (или подвес), удерживающую его от свободного падения. Если тело и опора неподвижны, то вес тела равен его силе тяжести.

4. Момент силы относительно точки

Рассмотрим гайку, которую затягивают гаечным ключом определенной длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы.

Понятие момента силы относительно точки ввел в механику итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519).

Моментом силы относительно точки называется произведение модуля силы на ее плечо:

М 0 (¥) = РИ.

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело (рис. 32, а). Система сил F, F, образующих пару, очевидно, не находится в равновесии (эти силы не направлены вдоль одной прямой). В то же время пара сил не имеет равнодействующей, поскольку, как будет доказано, равнодействующая любой системы сил главному вектору т. е. сумме этих сил, а для пары Поэтому свойства пары сил, как особой меры механического взаимодействия тел, должны быть рассмотрены отдельно.

Плоскость, проходящая через линии действия пары сил, называется плоскостью действия пары. Расстояние d между линиями действия сил пары называется плечом пары. Действие пары сил на твердое тело сводится к некоторому вращательному эффекту, который характеризуется величиной, называемой моментом пары. Этот момент определяется: 1) его модулем, равным произведению положением в пространстве плоскости действия пары; 3) направлением поворота пары в этой плоскости. Таким образом, как и момент силы относительно центра, это величина векторная.

Введем следующее определение: моментом пары сил называется вектор (или М), модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки (рис. 32, б).

Заметим еще, что так как плечо силы F относительно точки А равно d, а плоскость, проходящая через точку А и силу F, совпадает с плоскостью действия пары, то одновременно

Но в отличие от момента силы вектор , как будет показано ниже, может быть приложен в любой точке (такой вектор называется свободным). Измеряется момент пары, как и момент силы, в ньютон-метрах.

Покажем, что моменту пары можно дать другое выражение: момент пары равен сумме моментов относительно любого центра О сил, образующих пару, т. е.

Для доказательства проведем из произвольной точки О (рис. 33) радиусы-векторы

Тогда согласно формуле (14), что получим и, следовательно,

Так как то справедливость равенства (15) доказана. Отсюда, в частности, следует уже отмеченный выше результат:

т. е. что момент пары равен моменту одной из ее сил относительно точки приложения другой силы. Отметим еще, что модуль момента пары

Если принять, что действие пары сил на твердое тело (ее вращательный эффект) полностью определяется значением суммы моментов сил пары относительно любого центра О, то из формулы (15) следует, что две пары сил, имеющие одинаковые моменты, эквивалентны, т. е. оказывают на тело одинаковое механическое действие. Иначе это означает, что две пары сил, независимо от того, где каждая из них расположена в данной плоскости (или в параллельных плоскостях) и чему равны в отдельности модули их сил и их плечи, если их моменты имеют одно и то же значение , будут эквивалентны. Так как выбор центра О произволен, то вектор можно считать приложенным в любой точке, т. е. это вектор свободный.

Парой сил (или просто парой) называется совокупность двух параллельных сил, равных по модулю, противоположных по направлению и приложенных в разных точках тела (рис. 30). Пару сил будем обозначать символом . Силы называются силами пары; плоскость, в которой лежат силы, называется плоскостью действия пары.

Кратчайшее расстояние между линиями действия сил пары называется плечом пары (длина h отрезка АВ на рис.

30). Так как силы можно перемещать вдоль их линий действия, в дальнейшем силы пары будем изображать приложенными к концам плеча пары.

Будем также пользоваться более простым обозначением пары в виде , не содержащем обозначений точек приложения сил.

Пара сил характеризует особый вид взаимодействия тел, который нельзя выразить одной силой. Поэтому в статике, наряду с силами, рассматриваются отдельно также пары сил с их специфическими свойствами, правилами сложения и условиями равновесия.

Изначально пара сил задается четырьмя векторами (рис. 31.)-двумя векторами сил пары и двумя радиусами-векторами их точек приложения. Возьмем какую-либо точку пространства в качестве центра моментов О и вычислим моменты сил пары относительно этого центра

Тогда предыдущее утверждение можно выразить и в такой форме: пара сил может быть задана векторами сил пары и моментами этих сил относительно произвольного центра О. Теперь зададимся вопросом: нельзя ли пару сил задавать по-другому, желательно меньшим числом определяющих элементов?

Геометрическая сумма векторов сил пары всегда равна нулю, поэтому она не может использоваться для характеристики пары. Вычислим сумму моментов сил пары относительно точки О:

В полученном результате обращают на себя внимание два обстоятельства.

1. В то время как сумма векторов сил пары всегда равна нулю, сумма моментов сил пары отлична от нуля.

2. Сумма моментов сил пары не зависит от выбора центра моментов- векторы зависящие от выбора точки О, выпали из окончательного выражения для искомой суммы.

Таким образом, сумма моментов сил пары оказывается зависящей только от элементов самой пары - плоскости действия пары, модуля сил и плеча пары. Это наводит на мысль использовать эту величину в качестве характеристики пары сил. В дальнейшем сумму моментов сил пары будем называть моментом этой пары. Поскольку момент пары не зависит от выбора центра моментов, то он является свободным вектором - его можно прикладывать в любой точке твердого тела, на которое действует данная пара сил.

Итак, на вопрос о том, можно ли задавать пару сил более простым способом, получен утвердительный ответ: пару сил можно характеризовать, задавая лишь один вектор - момент пары. Моментом пары сил называется свободный вектор , равный геометрической сумме моментов сил пары относительно произвольно выбранной точки О пространства

Здесь следует заметить, что приведенные рассуждения имеют скорее наводящий характер и не являются строгим доказательством только что сформулированного вывода. Однако в статике имеется ряд теорем, в которыхсделанный вывод получает строгое обоснование. С этими теоремами можно познакомиться по полным учебникам по теоретической механике.

Воспользовавшись произволом в выборе точки О в определении момента пары, можно прийти к более простому способу вычисления момента. Примем в качестве центра моментов точку приложения силы -F (точку В на рис. 31). Тогда можно написать

Здесь учтено, что так как сила -F проходит через точку В. Если за центр моментов принять точку А, в которой приложена сила F, то в нуль обращается момент силы F, и мы получаем

Это приводит к еще одному правилу для вычисления момента пары: момент пары сил равен моменту одной из сил пары относительно точки приложения другой силы.

Тем самым определение момента пары сводится к вычислению и построению момента силы относительно точки, подобно рассмотренному ранее (см. стр. 12).

В итоге приходим к следующему выводу: момент пары сил есть вектор, численно равный произведению модуля сил пары на плечо пары и направленный перпендикулярно плоскости действия пары в ту сторону, из которой "вращение" пары видно происходящим против движения часовой стрелки (правило буравчика); в качестве точки приложения момента пары может быть взята любая точка тела.

Алгебраическим моментом пары называется произведение модуля сил пары на плечо пары, взятое со знаком плюс, если пара "вращает" свою плоскость против движения часовой стрелки, и со знаком минус, если наоборот.

На рис. 32 изображена пара сил , действующая в плоскости диска радиуса R, установленного перпендикулярно к оси вращения. Плечо пары равно диаметру диска, модуль момента пары равен

Момент пары направлен перпендикулярно плоскости диска и может быть приложен в любой точке диска.

На рис. 33 показан аналогичный случай, но изображенный в плоской проекции. Здесь силы пары () направлены перпендикулярно плоскости чертежа (знаком изображаются векторы, направленные , знаком - от читателя). Момент пары по модулю равен , перпендикулярен плоскости диска и лежит в плоскости чертежа (точнее, может быть перенесен параллельно себе в плоскость чертежа).

Еще два примера построения момента пары содержатся на рис. 34. Модули моментов изображенных пар имеют значения:

Векторы-моменты пар имеют проекции:

Свойства пары сил

1. Можно изменять величину сил и плечо пары, оставляя без изменения величину момента и направление "вращения" сил пары.

2. Пару сил можно как угодно перемещать в своей плоскости действия.

3. Пару сил можно перемещать параллельно себе в любую плоскость, неизменно связанную с телом, к которому она приложена.

Перечисленные в этих свойствах действия не изменяют ни величину, ни направление момента пары, поэтому являются эквивалентными преобразованиями пары.

В приведенных выше примерах речь шла о построении момента по заданным элементам пары - плоскости действия, силам и плечу пары. Можно ставить и обратную задачу - построить пару сил по ее моменту. Пусть требуется построить пару сил по ее моменту М (рис. 35, а). Для этого строим плоскость П, перпендикулярную линии действия момента (рис. 35, б). Эта плоскость будет служить плоскостью действия пары. В этой плоскости располагаем две силы

Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны.

Рассмотрим систему сил (Р; Б"), образую­щих пару.

Пара сил вызывает вращение тела и ее дей­ствие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, т. к. они приложены к двум точкам (рис. 4.1).

Их действие на тело не может быть заменено од­ной силой (равнодействующей).

Момент пары сил численно равен произве­дению модуля силы на расстояние между лини­ями действия сил (плечо пары).

Момент считают положительным, если па­ра вращает тело по часовой стрелке (рис. 4.1(б)):

М(F;F") = Fa ; М > 0.

Плоскость, проходящая через линии дей­ствия сил пары, называется плоскостью действия пары.

Свойства пар (без доказательств):

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар.

Две пары, моменты которых равны, (рис. 4.2) эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равно­действующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему (рис. 4.3):

4. Равновесие пар.

Для равновесия пар необходимо и достаточно, чтобы алгебраи­ческая сумма моментов пар системы равнялась нулю:

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Момент силы. Пара сил.

1. Основные понятия и определения статики.

Материальные объекты в статике:

материальная точка,

система материальных точек,

абсолютно твердое тело.

Системой материальных точек, или механической системой, называется такая совокупность материальных точек, в которой положение и движение каждой точки зависит от положения и движения других точек этой системы.

Абсолютно твердое тело – это тело, расстояние между двумя точками которого не изменяется.

Твердое тело может находиться в состоянии покоя или движения определенного характера. Каждое их этих состояний будем называть кинематическим состоянием тела .

Сила - мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.

Сила может быть приложена в точке, тогда эта сила – сосредоточенная .

Сила может действовать на все точки данного объема или поверхности тела, тогда эта сила – распределенная .

Система сил - с овокупность сил, действующих на данное тело.

Равнодействующей называется сила, эквивалентная некоторой системе сил.

Уравновешивающей силой называется сила, равная по модулю равнодействующей и направленная по линии ее действия в противоположную сторону.

Системой взаимно уравновешивающихся сил называется система сил, которая будучи приложенной к твердому телу, находящемуся в покое, не выводит его из этого состояния.

Внутренние силы – это силы, которые действуют между точками или телами данной системы.

Внешние силы – это силы, которые действуют со стороны точек или тел, не входящих в данную систему.

Задачи статики:

- преобразование систем сил, действующих на твердое тело в эквивалентные им системы;

- исследование условий равновесия тел под действием приложенных к ним сил.

1. Аксиомы статики.

3. Аксиома присоединения и исключения уравновешивающихся сил . Действие системы сил на твердое тело не изменится, если к ней присоединить или из нее исключить систему взаимно-уравновешивающихся сил.

Следствие . Не изменяя кинематического состояния абсолютно твердого тела, силу можно переносить вдоль линии ее действия, сохраняя неизменным ее модуль и направление.

С ила - скользящий вектор.

4. Аксиома параллелограмма сил . Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.

5. Аксиома равенства действия и противодействия . Всякому действию соответствует равное и противоположно направленное противодействие.

2. Связи и их реакции

Твердое тело называется свободным , если оно может перемещаться в пространстве в любом направлении.

Тело, ограничивающее свободу движения данного твердого тела, является по отношению к нему связью .

Твердое тело, свобода движения которого ограничено связями, называется несвободным .

Все силы, действующие на несвободное твердое тело, можно разделить на:

  • задаваемые (активные)
  • реакции связей

Задаваемая сила выражает действие на данное тело других тел, способных вызвать изменение его кинематического состояния.

Реакция связи – это сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям.

Принцип освобождаемости твердых тел от связей - несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил, действуют реакции связей.

Как определить направление реакции?

Если существует два взаимно перпендикулярных направления на плоскости, в одном из которых связь препятствует перемещению тела, а в другом нет, то направление ее реакции противоположно первому направлению.

В общем случае направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу.

Неподвижный шарнир

Подвижный

3. Момент силы относительно центра

Моментом силы F относительно некоторого неподвижного центра О называется вектор, расположенный перпендикулярно к плоскости, проходящей через вектор силы и центр О, направленный в ту сторону, чтобы смотря с его конца можно было видеть поворот силы F относительно центра О против часовой стрелки.

Свойства момента силы относительно центра:

1) Модуль момента силы относительно центра может быть выражен удвоенной площадью треугольника ОАВ

(1.1)

2) Момент силы относительно центра равен нулю в том случае, если линия действия силы проходит через эту точку, то есть h = 0 .

3) Если из точки О в точку приложения силы А провести радиус вектор, то вектор момента силы можно выразить векторным произведением

(1.2)

4) При переносе силы по линии ее действия вектор ее момента относительно данной точки не изменяется.

Если к твердому телу приложено несколько сил, лежащих в одной плоскости, можно вычислить алгебраическую сумму моментов этих сил относительно любой точки этой плоскости

Момент М О , равный алгебраической сумме моментов данной системы относительно какой-либо точки в той же плоскости, называют главным моментом системы сил относительно этой точки.

3. Момент силы относительно оси

Чтобы определить момент силы относительно оси необходимо:

1) провести плоскость, перпендикулярную к оси Z;

2) определить точку О пересечения оси с плоскостью;

3) спроецировать ортогонально силу F на эту плоскость;

4) найти момент проекции силы F относительно точки О пересечения оси с плоскостью.

Правило знаков:

Момент силы относительно оси считается положительным , если, смотря навстречу оси Z, можно видеть проекцию , стремящейся вращать плоскость I вокруг оси Z в сторону, противоположную вращению часовой стрелки.

Свойства момента силы

относительно оси

1) Момент силы относительно оси изображается отрезком, отложенным по оси Zот точки О в положительном направлении, если > 0 и в отрицательном направлении, если < 0.

2) Значение момента силы относительно оси может быть выражено удвоенной площадью Δ

(1.5)

3) Момент силы относительно оси равен нулю в двух случаях:

  • если F 1 = 0 , то есть линия действия силы параллельна оси;
  • eсли h 1 = 0 , то есть линия действия силы пересекают ось.

4. Пара сил. Векторный и алгебраический момент пары сил

Система двух равных по модулю, параллельных и противоположно направленных сил и , называется парой сил.

Плоскость, в которой находятся линии действия сил и , называется плоскостью действия пары сил.

Кратчайшее расстояние h между линиями действия сил, составляющих пару, называется плечом пары сил .

Момент пары сил определяется произведением модуля одной из сил пары на плечо.

Правило знаков

Вектор момента М пары и направляют перпендикулярно к плоскости действия пары сил в такую сторону, что бы смотря навстречу этому вектору, видеть пару сил стремящейся вращать плоскость ее действия в сторону, обратную вращению часовой стрелки.

  1. 4. Свойства пар сил на плоскости

Свойство 1 . Вектор-момент M пары по модулю и направлению равен векторному произведению радиуса вектора АВ на ту из сил этой пары, к началу которой направлен радиус-вектор АВ , то есть

(1.7)

Свойство 2 . Главный момент сил, составляющих пару относительно произвольной точки на плоскости действия пары, не зависит от положения этой точки и равняется моменту этой пары сил.

5. Условия эквивалентности пар сил

Теорема об условии эквивалентности пар сил,

лежащих в одной плоскости.